基于神经网络的大麦病害识别研究  被引量:3

Barley diseases discrimination based on neural network

在线阅读下载全文

作  者:王临铭 高晓阳[1] 李红岭[1] 邵世禄[1] 田斌[1] 王关平[1] 杨梅[1] 李妙祺[1] 李小莹[1] 杨建青[1] 王明磊[1] 寇敏瑜[1] 

机构地区:[1]甘肃农业大学工学院,甘肃兰州730070

出  处:《甘肃农业大学学报》2015年第2期173-176,180,共5页Journal of Gansu Agricultural University

基  金:国家自然科学基金项目(61164001);甘肃省教育厅高等学校科研计划项目(1102-07);甘肃省干旱生境作物学重点实验室开放基金(1102-11)

摘  要:试验首先提取甘肃大麦病斑的颜色和纹理特征,以特征向量为输入向量来构造大麦病害神经网络分类器模型.然后利用神经网络对采集到的训练集病害图像进行分类模型训练,最后以随机选取的两组测试图像进行了分类试验.结果表明:大麦病害神经网络分类器模型对甘肃大麦病害的整体识别正确率达到86.7%以上.因而,基于神经网络的大麦病害图像识别研究为大麦田间病害归类诊治提供了新型技术,为西北特别是甘肃大麦病害的早期诊断与科学防治奠定了技术基础.Barley diseases have a great negative impact on the yield and quality.Firstly,disease spot color and texture features were extracted from barley field images in Gansu Province,and the feature vectors were used as input vector to establish barley diseases classifier model.Then,the neural network was applied to train classified model with collected images as training set.Finally,two groups of random selected images as test sets were used to perform classified verification experiments.The experimental results showed that the overall accuracy of barley diseases recognition model was above 86.7%.Therefore,Barley disease image recognition based on neural network provides a new technology for the classified treatment of barley diseases,and also can lay a solid technical foundation for the early diagnosis and the scientific prevention of barley diseases.

关 键 词:大麦 神经网络 病害 图像处理 识别 

分 类 号:S435.121[农业科学—农业昆虫与害虫防治]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象