检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘道践[1] 李源[1] 安维民[2] 顾风军[1]
机构地区:[1]解放军第302医院医学信息中心,北京100039 [2]解放军第302医院医学影像中心,北京100039
出 处:《中国医学装备》2015年第5期1-4,共4页China Medical Equipment
基 金:国家高技术研究发展计划(2012AA02A606)"功能性临床信息技术与系统开发";解放军第302医院院内课题(YNKT2012034)"基于海量医学图像分析的肝癌辅助诊断"
摘 要:目的:通过研究肝癌计算机辅助诊断方法,实现自动识别肝癌病灶特征区域,达到辅助医生诊断的目的。方法:针对图像分割及识别等技术难点,在传统计算机辅助诊断的基础上,改进并提出新的图像预处理及图像分割方法;根据已有的大规模标注图像数据进行肝部病灶智能分类,从多方位对肝部病灶进行判断,以提高计算机辅助诊断的可用性。结果:通过试验可较好地对病灶区域进行分割及识别,初步实现了肝癌病灶的识别。结论:利用计算机辅助诊断方法,可敏锐地识别肝癌病灶的细微变化,为肝癌辅助诊断提供参考指标,提高肝部恶性肿瘤识别的准确性。Objective:To investigate the computer auxiliary diagnosing method of liver cancer to realize the automatic recognition of hepatocellular carcinoma (HCC) lesions characteristic region so as to assist the doctor in diagnosing the tumor. Methods:Facing the technical difficulties in image segmentation and recognition, we put forward a new image preprocessing and segmentation method based on the data of traditional computer-aided diagnosis. Meanwhile, we made intelligent classification of liver lesions according to a large number of existing image annotation data to improve the usability of computer-aided diagnosis through the judgment of liver lesions in many aspects. Results: Better segmentation and recognition of the lesions were achieved to realize the identification of HCC lesions. Conclusion:The use of computer-aided diagnosis of HCC results in keen recognition of slight changes of lesions in patients. Furthermore, it can provide a reference for the auxiliary diagnosis of HCC. As a result, the diagnosing accuracy of liver malignant tumor can be improved combining with the doctor's clinical experience.
分 类 号:R197.324[医药卫生—卫生事业管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30