Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells  

Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In0.53Ga0.47As/InP Multiple Quantum Wells

在线阅读下载全文

作  者:王海娇 李豫东 郭旗 玛丽娅 文林 汪波 

机构地区:[1]Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 [2]Xinjiang Key Laboratory of Electronic Information Materials and Devices, Urumqi 830011 [3]University of Chinese Academy of Sciences, Beijing 100049

出  处:《Chinese Physics Letters》2015年第5期99-102,共4页中国物理快报(英文版)

摘  要:Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.Long-term room-temperature annealing effects of InGaAs/InP quantum wells with different wells (namely triple wells and five wells embedded) and bulk InCaAs are investigated after high energy electron irradiation. It is observed that the photoluminescence (PL) intensity of bulk InGaAs materials is enhanced after low dose electron irradiation and the PL intensity for all the three samples is degraded dramatically when the electron dose is relatively high. With respect to the room-temperature annealing, we find that the PL intensity for both samples recovers relatively fast at the initial stage. The PL performance of multiple quantum-well samples shows better recovery after irradiation compared with the results of bulk InGaAs materials. Meanwhile, the recovery speed factors of multiple quantum-well samples are relatively faster than those of the bulk InGaAs materials as well. We infer that the recovery difference between the quantum-well materials and bulk materials originates from the fact that the radiation induced defects are confined in the quantum wells as a consequence of the free energy barrier between the In0.53Ga0.47 As wells and InP barrier layers.

关 键 词:InGaAs INP Ga Room-Temperature Annealing of 1 MeV Electron Irradiated Lattice Matched In As/InP Multiple Quantum Wells 

分 类 号:O471.1[理学—半导体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象