最小二乘支持向量机回归的卫星钟差非线性组合预报  被引量:2

Nonlinear combined prediction of satellite clock error based on least squares support vector machines regression

在线阅读下载全文

作  者:雷雨[1,2,3] 赵丹宁[1,4,3] 

机构地区:[1]中国科学院国家授时中心,西安710600 [2]中国科学院时间频率基准重点实验室,西安710600 [3]中国科学院大学,北京100039 [4]中国科学院精密定位与定时技术重点实验室,西安710600

出  处:《测绘科学》2015年第5期33-36,共4页Science of Surveying and Mapping

基  金:国家自然科学基金项目(10573019)

摘  要:针对应用单一方法预报卫星钟差的局限性,文章提出了基于最小二乘支持向量机回归的卫星钟差非线性组合预报方法:首先根据历史钟差数据建立二次多项式模型和灰色模型,然后利用这些模型进行钟差预报,最后采用最小二乘支持向量机回归算法对两种模型的预报结果进行非线性组合,以获得最终预报值;对比了RBF核函数、线性核函数和多项式核函数对组合预报性能的影响,并将本文组合预报方法与经典权组合方法进行比较。结果表明,本文方法优于经典权法,且线性核函数更适合组合预报。In view of the single approach limitations, an integrated method to combine the result of single models was proposed to predict the satellite clock error in the paper. This method employed least squares support vector machines(LSSVM)regression for combination of the quadratic polynomial model and the grey model in the nonlinear manner. Because a kernel function influences on performance of the LSSVM, the RBF function, the linear function and the polynomial function were employed to find out which kernel function is most suitable for hybrid prediction. In order to verify the feasibility and validity, the method was compared with the classical weighed algorithm. The result showed that the proposed meth- od would be better classical one, and the linear kernel function could be more suitable for the proposed method.

关 键 词:卫星钟差 预报 组合 非线性 最小二乘支持向量机回归 

分 类 号:P228.4[天文地球—大地测量学与测量工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象