检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津理工大学计算机与通信工程学院,天津300384
出 处:《天津理工大学学报》2015年第3期16-21,共6页Journal of Tianjin University of Technology
基 金:天津市自然科学基金重点项目(11JCZDJC15600)
摘 要:L0梯度最小化模型(LGM)作为一个最基本的数学工具已经成功的被用在了图像平滑领域.该模型最大的优势就是在处理图像的同时能够很好的保护图像的显著边缘.然而,作为总变差模型(TV)的改进版本,L0梯度最小化模型处理得到的结果图中却存在着比总变差模型更严重的阶梯效应并且不能够很好地保护图像的纹理和细节特征.为了克服这些缺点,本文提出将L0梯度最小化模型中的一阶导数推广到二阶偏导并且引入一个保真项,然后将其应用在图像去噪中.这个保真项是使用控制核作为核函数的移动最小二乘,即核回归模型.该模型虽然能够很好地保护图像的纹理特征,但是该模型处理得到的结果图中不仅会有流式效应并且不能很好的保护图像边缘.因此,本文利用二者的优势将其结合进行图像去噪.大量的实验结果表明提出的模型不仅具有良好的去噪属性并且在去除噪声的同时能够很好地保护图像的边缘和纹理特征.The L0 gradient minimization (LGM) method has been proposed for image smoothing very recently. As an improve- ment of the total variation (TV) model which employs the LI norm of the gradient, the LGM model yields much better results for the piecewise constant image. However, just as the TV model, the LGM model also suffers, even more seriously, from the staircasing effect and the inefficiency in preserving the texture in image. In order to overcome these drawbacks, in this paper, we extend the LGM model to I4 two-order partial derivative minimization and introduce an effective fidelity term into the 14 two-order partial derivative minimization. The fidelity term is an exemplar of the moving least square method using steering kernel, that is kernel regression (KR). This method can preserve the texture better, but it does not only have the disadvantage of leading to the serious flow-like effects but also often blurs the image edges. So this paper uses the advantages of both meth- ods fully and proposes a new image denoising algorithm. Enough experiments demonstrate that the proposed model does not only has better performance but also preserve the edges and texture well.
关 键 词:核回归 图像去噪 L0梯度最小化 L0二阶偏导最小化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15