基于多核学习支持向量机的音乐流派分类  被引量:8

Music genre classification based on multiple kernel learning and support vector machine

在线阅读下载全文

作  者:孙辉[1,2] 许洁萍[1,2] 刘彬彬[1] 

机构地区:[1]中国人民大学信息学院,北京100872 [2]数据工程与知识工程教育部重点实验室(中国人民大学),北京100872

出  处:《计算机应用》2015年第6期1753-1756,共4页journal of Computer Applications

基  金:中国人民大学科学研究基金(中央高校基本科研业务费专项资金)资助项目(14XNLQ01)

摘  要:针对不同特征向量下选择最优核函数的学习方法问题,将多核学习支持向量机(MK-SVM)应用于音乐流派自动分类中,提出了将最优核函数进行加权组合构成合成核函数进行流派分类的方法。多核分类学习能够针对不同的声学特征采用不同的最优核函数,并通过学习得到各个核函数在分类中的权重,从而明确各声学特征在流派分类中的权重,为音乐流派分类中特征向量的分析和选择提供了一个清晰、明确的结果。在ISMIR 2011竞赛数据集上验证了提出的基于多核学习支持向量机(MKL-SVM)的分类方法,并与传统的基于单核支持向量机的方法进行了比较分析。实验结果表明基于MKL-SVM的音乐流派自动分类准确率比传统单核支持向量机的分类准确率提高了6.58%,且该方法与传统的特征选择结果比较,更清楚地解释了所选择的特征向量对流派分类的影响大小,通过选择影响较大的特征组合进行分类,分类结果也有了明显的提升。Multiple Kernel Learning and Support Vector Machine (MKL-SVM) was applied to automatic music genre classification to choose the optimal kernel functions for different features, a method of conducting the optimal kernel function combination into the synthetic kernel function by weighting for music genre classification was proposed. Different optimal kernel functions were chosen for different acoustic features by multiple kernel classification learning, the weight of each kernel function in classification was obtained, and the weight of each acoustic feature in the classification of the genre was clarified, which provided a clear and definite result for the analysis and selection of the feature vector in the classification of music genre. The experiments on the dataset of ISMIR 2011 show that, compared with the traditional single kernel support vector machine classification, the accuracy of the proposed music genre automatic classification method based on MKL-SVM is greatly improved by 6.58%. And the proposed method can more clearly reveal the the different features' impacts on music genre classification results, the classification results has also been significantly improved by selecting features with larger effects on classification.

关 键 词:音乐流派分类 多核学习 支持向量机 特征选择 模式识别 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象