检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖北第二师范学院数学与统计学院,武汉430205 [2]湖北中医药大学护理学院,武汉430065
出 处:《统计与决策》2015年第11期13-17,共5页Statistics & Decision
基 金:国家自然科学基金青年科学基金资助项目(61205196)
摘 要:文章引进了l1极小化技术,来选择线性回归模型中的自变量。主要是解决一个加权向量的l1极小化问题,使所求向量尽可能稀疏。通过二次规划构想,进行变换,使之成为求解二次规划的问题,然后用GP-SR(稀疏重建的梯度投影)的方法来求解。通过l1极小化理论和数据的稀疏性的应用,就可以大大的减少自变量的个数,从而减轻了回归的计算量并且能保持回归模型的质量。
分 类 号:O213[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3