检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱双[1] 周建中[1] 孟长青[1] 肖舸 陈健国
机构地区:[1]华中科技大学水电与数字化工程学院,武汉430074 [2]中国长江三峡集团三峡梯调中心,湖北宜昌443000
出 处:《水力发电学报》2015年第6期1-6,共6页Journal of Hydroelectric Engineering
基 金:国家自然科学基金项目(51239004);高等学校博士学科点专线科研基金资助项目(20100142110012)
摘 要:针对径流时间序列固有的非线性和随机性特点,提出基于灰色关联分析的模糊支持向量机预报方法。该方法在传统支持向量机任意逼近的非线性映射能力上,引入模糊隶属函数来考虑气候和流域下垫面条件变化下不同时期径流样本对预报结果的影响。预报因子选取是中长期径流预报的一大难点,考虑到相关系数法只能衡量因子间线性相关程度的不足,本文采用灰色关联分析来量化预报因子与预报对象的关联程度,并按关联度大小从众多的相关因子中挑选出对径流过程影响显著的预报因子。将该方法应用于金沙江上游控制站石鼓站的月径流预报中,与GRNN神经网络模型和A-FSVM模型的预报结果比较表明,该方法能提高径流中长期预报的精度,是一种有效的径流时间序列预测模型。This paper presents a fuzzy support vector machine forecasting method based on gray correlation analysis for forecasting streamflow featured with nonlinearity and randomness. This method takes advantage of traditional SVM in its arbitrary approximation ability and nonlinear mapping, and adopts a fuzzy membership function to consider the impacts of changes in climate and watershed surface conditions on streamflow forecasting results. Predictor selection is difficult in long-term streamflow forecasting and the correlation coefficient method can only measure linear correlation between factors. Hence, we adopt gray correlation analysis to quantify the degree of association and pick out predictors that have significant impact on the streamflow. This model was applied to forecasting of monthly stream flow at Shigu, a control station of the upper Jinsha river. Comparison with the GRNN model and A-FSVM model shows that the method is effective and improves the accuracy of long-term streamflow forecasting.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43