机构地区:[1]Department of Biomedical Sciences,Seoul National University College of Medicine [2]Department of Neurology,Biomedical Research Institute,Seoul National University Hospital [3]Department of Biochemistry,Seoul National University College of Medicine [4]Protein Metabolism Medical Research Center,College of Medicine,Seoul National University
出 处:《Neural Regeneration Research》2015年第5期786-791,共6页中国神经再生研究(英文版)
基 金:supported by a grant(A121911 and HI14C2348)of the Korean Health Technology R&D Project,Ministry of Health&Welfare;National Research Foundation of Korea(NRF)(2011-0012728 and 2014R1A2A1A11051520)
摘 要:MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington's disease mouse models and patients is decreased. However, the effects of microRNA-124 on the progression of Huntington's disease have not been reported. Results from this study showed that microRNA-124 increased the latency to fall for each R6/2 Hunting- ton's disease transgenic mouse in the rotarod test. 5-Bromo-2'-deoxyuridine (BrdU) staining of the striatum shows an increase in neurogenesis. In addition, brain-derived neurotrophic factor and peroxisome proliferator-activated receptor gamma coactivator 1-alpha protein levels in the striatum were increased and SRY-related HMG box transcription factor 9 protein level was de- creased. These findings suggest that microRNA-124 slows down the progression of Huntington's disease possibly through its important role in neuronal differentiation and survival.MicroRNA-124 contributes to neurogenesis through regulating its targets, but its expression both in the brain of Huntington's disease mouse models and patients is decreased. However, the effects of microRNA-124 on the progression of Huntington's disease have not been reported. Results from this study showed that microRNA-124 increased the latency to fall for each R6/2 Hunting- ton's disease transgenic mouse in the rotarod test. 5-Bromo-2'-deoxyuridine (BrdU) staining of the striatum shows an increase in neurogenesis. In addition, brain-derived neurotrophic factor and peroxisome proliferator-activated receptor gamma coactivator 1-alpha protein levels in the striatum were increased and SRY-related HMG box transcription factor 9 protein level was de- creased. These findings suggest that microRNA-124 slows down the progression of Huntington's disease possibly through its important role in neuronal differentiation and survival.
关 键 词:nerve regeneration microRNA-124 NEUROGENESIS neuronal survival Huntington'sdisease SRY-related HMG box transcription factor 9 brain-derived neurotrophic factor peroxisomeproliferator-activated receptor gamma coactivator 1-alpha mutant huntingtin
分 类 号:R742.2[医药卫生—神经病学与精神病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...