检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南大学数学与统计学院,重庆400715 [2]西安交通大学数学与统计学院,陕西西安710049
出 处:《电子学报》2015年第5期922-928,共7页Acta Electronica Sinica
基 金:国家自然科学基金(No.61273020);中央高校基本业务费专项(No.XDJK2015A007)
摘 要:压缩感知是一种新颖的信号处理理论.它突破了传统香农采样理论对采样的限制,以信号的稀疏性或可压缩性为基础,实现了信号的高效获取和精确重构.然而在现实中,部分稀疏信号还表现出一些其他结构,典型的例子就是一类块稀疏信号,其非零元素以块的形式出现.针对这类信号,本文研究了求解块稀疏压缩感知的迭代重赋权最小二乘算法(IRLS),给出了该算法的理论分析:误差估计和局部收敛性分析.大量试验验证了基于迭代重赋权最小二乘算法的块稀疏压缩感知策略的有效性.Compressed sensing is a novel theory for signal processing which breaks through the sampling limitation based on traditional Shannon sampling theory, and makes it into reality that one can efficiently acquire and exactly reconstruct a signal using the prior knowledge that it is sparse or compressible. In reality ,however, some signals exhibit additional structures, the typical example is the signal which is called block-sparse signal,i.e. ,the non-zero coefficients appear in a few fixed blocks.In order to tackle such block-sparse signal, in this paper we investigate the iterative reweighed least squares algorithm for biock-sparse compressed sensing. The error estimation and local convergence analysis have been established. We simultaneously demonstrate the effectiveness of the iterative reweighed least squares algorithm (IRLS) for block-sparse compressed sensing by simulation results.
关 键 词:压缩感知 迭代重赋权最小二乘算法 块稀疏信号 误差估计 局部收敛性
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.40.192