一类新节点集上的Newman有理插值逼近  被引量:1

The Newman Rational Interpolating Approximation Based on a New Set of Nodes

在线阅读下载全文

作  者:詹倩[1] 许树声[2] 

机构地区:[1]安徽理工大学理学院,安徽淮南232001 [2]华东理工大学理学院,上海200237

出  处:《安徽理工大学学报(自然科学版)》2015年第2期83-86,共4页Journal of Anhui University of Science and Technology:Natural Science

摘  要:为了得到在[-1,1]上对非光滑函数|x|逼近误差的上界,构造了一组全新的节点集,并证明了基于该节点集的Newman型有理插值算子逼近函数|x|的误差上界为e-2/1+εn其中ε为仅依赖n的小正数,可随着n增大任意减小乃至趋于零。该误差上界优于利用Newman节点集所得到的结果。同时通过合理分配节点集在区间上的分布及改进不等式的证明方法,逼近的误差阶可进一步提高。In order to get the upper bound of the error of approximating the non - smooth function I x I in [ - 1, 2 1 ], a new set of interpolating nodes was constructed. And the order of approximation is e-2/1+g√n where ε only depends on n and ε→0+ (n→∞ ) . This upper bound of error is sharper than the results obtained with Newman nodes. Furthermore, it can be sharpened by improving the method of the inequality proving and the distribution of nodes.

关 键 词:函数逼近 非光滑函数 Newman有理插值算子 

分 类 号:O174.41[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象