检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁希斌 张初[1] 刘飞[1] 宋星霖 孔汶汶[1] 何勇[1]
机构地区:[1]浙江大学生物系统工程与食品科学学院,浙江杭州310058
出 处:《光谱学与光谱分析》2015年第4期1020-1024,共5页Spectroscopy and Spectral Analysis
基 金:国家高技术研究发展计划(863计划)项目(2012AA101903);浙江省公益性技术应用研究计划项目(2014C32103);中央高校基本科研业务费专项资金项目(2014FZA6005)资助
摘 要:采用高光谱成像技术结合不同的特征提取方法,实现了对草莓可溶性固形物含量的检测。通过提取154颗成熟无损伤草莓的高光谱图像的874~1 734nm范围光谱信息,对941~1 612nm光谱采用移动平均法(moving average,MA)进行预处理。基于残差法剔除19个异常样本后将剩余135个样本分为建模集(n=90)和预测集(n=45)。采用连续投影算法(successive projections algorithm,SPA),遗传偏最小二乘算法(genetic algorithm-partial least squares,GAPLS)结合连续投影算法(GAPLS-SPA),加权回归系数(weighted regression coefficient,Bw)以及CARS法(competitive adaptive reweighted sampling)选择特征波长分别提取14,17,24与25个特征波长,并采用主成分分析(principal component analysis,PCA)与小波变换(wavelet transform,WT)分别提取20与58个特征信息。分别基于全波段光谱、特征波长与特征信息建立PLS模型。所有模型都取得了较好的效果,基于全波段光谱的PLS模型与基于WT提取的特征信息的PLS模型的效果最优,建模集相关系数(rc)与预测集相关系数(rp)均高于0.9。结果表明高光谱成像技术结合特征提取方法可用于草莓可溶性固形物含量的检测。Hyperspectral imaging combined with feature extraction methods were applied to determine soluble sugar content (SSC) in mature and scatheless strawberry .Hyperspectral images of 154 strawberries covering the spectral range of 874~1 734 nm were captured and the spectral data were extracted from the hyperspectral images ,and the spectra of 941~1 612 nm were preprocessed by moving average (MA) .Nineteen samples were defined as outliers by the residual method ,and the remaining 135 samples were divided into the calibration set (n=90) and the prediction set (n=45) .Successive projections algorithm (SPA) , genetic algorithm partial least squares (GAPLS ) combined with SPA ,weighted regression coefficient (Bw ) and competitive adaptive reweighted sampling (CARS) were applied to select 14 ,17 ,24 and 25 effective wavelengths ,respectively .Principal component analysis (PCA) and wavelet transform (WT) were applied to extract feature information with 20 and 58 features ,re‐spectively .PLS models were built based on the full spectra ,the effective wavelengths and the features ,respectively .All PLS models obtained good results .PLS models using full spectra and features extracted by WT obtained the best results with correla‐tion coefficient of calibration (rc ) and correlation coefficient of prediction (rp ) over 0.9 .The overall results indicated that hyper‐spectral imaging combined with feature extraction methods could be used for detection of SSC in strawberry .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7