基于GA-BP神经网络的彩色扫描仪光谱特征化  

Spectral Characterization of Color Scanners Based on GA-BP Neural Network

在线阅读下载全文

作  者:于海琦[1] 刘真[1] 田全慧[2] 

机构地区:[1]上海理工大学出版印刷与艺术设计学院,上海200093 [2]上海出版印刷高等专科学校印刷包装工程系,上海200093

出  处:《包装学报》2015年第3期46-49,共4页Packaging Journal

基  金:国家自然科学青年基金资助项目(61301231);上海市研究生创新基金资助项目(JWCXSL1402)

摘  要:为了实现彩色扫描仪的光谱特征化,采用一种GA修正的BP神经网络与PCA相结合的方法对其进行研究。首先,通过主成分分析,对训练样本的光谱反射率进行降维,以RGB信号和降维后的光谱数据作为输入、输出变量进行GA-BP神经网络的建模,对任意RGB信号都可以通过模型得到其低维光谱信号;再通过主成分分析重构光谱反射率,由此实现RGB信号对光谱反射率的重构,即实现扫描仪的光谱特征化。实验结果表明,GA的优化有效地改善了BP神经网络的极值问题,提高了模型的预测精度,PCA在不影响模型精度的同时提高了模型的效率。由此说明,所提出的模型能够满足扫描仪光谱特征化的需求。To achieve spectral characterization of color scanners, a spectral characterization model based on GA-BP and PCA was proposed. Firstly, the dimension of spectral reflectance was reduced by PCA. The GA-BP neural network model was built with input of variables of RGB signal and output of variables of low dimensional spectrum signal. Any low dimensional spectrum signal could be got by this model with any input RGB signal, while the spectral reflectance could be reconstructed by PCA. The spectral characteristics of color scanners were achieved. Experimental results show that the extremum problem of BP neural network could be effectively improved by GA. PCA could improve the operating efficiency of the model under the circumstances of maintaining accuracy, This implied it was a high-precision color scanner characteristic model.

关 键 词:彩色扫描仪 光谱特征化 BP神经网络 遗传算法 主成分分析 

分 类 号:TP334.8[自动化与计算机技术—计算机系统结构] O432.3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象