检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学野战工程学院,江苏南京210007
出 处:《计算机仿真》2015年第6期1-5,共5页Computer Simulation
基 金:国家自然科学基金(51175511)
摘 要:研究电传动履带车辆再生制动控制策略问题。再生制动技术要保证车辆获得最佳制动效能,延长制动器寿命并充分回收能量,因此对其控制策略提出较高要求。传统的控制策略对门限参数漂移的适应能力较差,存在模式切换频繁,制动器磨损严重和能量回收率较低等问题。为解决上述问题,提出了一种粒子群算法优化的模糊再生制动控制方案,在SIMULINK和d SPACE环境下建立了驾驶员-测试控制器在环的半实物仿真平台,实现了再生制动控制策略的优化设计与实时验证。实验结果表明,与传统门限逻辑控制策略相比,优化的模糊控制策略在能量回收率方面提高了2.83%,在燃油经济性方面提高了31.16%,具有很好的控制效果和实际应用价值。The research target of this paper focus on regenerative braking control strategy of electric tracked vehi- cle. In order to ensure the braking efficiency, brake serving life and energy regeneration of vehicle, higher demands are needed for control strategy. Because of poor adaptation in parameter changes, the gateway control has problems in mode switching, brake wear and energy recovery. To solve the problems, a control strategy of regenerative braking was designed through fuzzy logic control. The subordinating degree function was optimized by using a particle swarm optimization algorithm. A driver - controller based hardware - in - the - loop simulation (HILS) platform was built and the control strategy was verified. The simulations rew:al that the optimized fuzzy control is superior to gateway control in energy recuperation by 2. 83% and fuel saves by 31.16% , which will achieve a good control effect and practical value.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63