检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈燕芹[1,2] 段锦[1,2] 祝勇[3] 钱小飞[1] 肖博[1]
机构地区:[1]长春理工大学电子信息工程学院,吉林长春130022 [2]长春理工大学空间光电技术研究所,吉林长春130022 [3]长春理工大学计算机科学技术学院,吉林长春130022
出 处:《中国光学》2015年第3期407-414,共8页Chinese Optics
基 金:国家高技术研究发展计划(863项目)资助项目(No.2013AA7XX10XX)
摘 要:为了更好地描述图像内部的复杂程度,建立图像复杂度与各指标之间的数学模型是研究图像复杂度最关键的一步。首先从图像纹理出发,试图建立图像复杂度与各指标之间定量、精确的数学关系描述。针对目前图像复杂度与各衡量指标之间没有明确的数学关系的特点,文中采用灰度共生矩阵对纹理的主要特征参数进行分析,提出了基于BP神经网络的图像复杂度评价方法,建立了图像复杂度与各个指标之间非线性的数学评价模型。通过大量的图片对神经网络进行训练学习,得到各指标的权重值。验证结果表明,所建评价模型能够真实地反映图像内部的复杂程度,获得的实验结果与人类视觉感知的结果基本一致。对于将BP神经网络应用于图像复杂度的研究具有一定的参考价值。In order to better describe the internal complexity of image, the establishment of the mathematic model between the image complexity and each index is the key step to study the complexity of image.Firstly, starting from the image texture, we try to establish a quantitative and precise mathematical description of the relationship between the image and the complexity of various indicators.There is no clear mathematical rela-tionship between the image complexity and the measurable indicators, so gray level co-occurrence matrix( GL-CM) is used to analyze the main characteristic parameters of the texture.The image complexity evaluation method is proposed based on BP neural network.Then a nonlinear mathematical evaluation model between im-age complexity and each index is established.And the weight values and index are obtained by the training for the neural network and learning through numbers of pictures.The verification results show that the evaluation model is able to reflect the internal complexity of the image truly, and the experimental results obtained are consistent with human visual perception.It is of a certain reference value for the application of BP neural net-work to study the image complexity.
关 键 词:图像复杂度 纹理特征 灰度共生矩阵 BP神经网络 权重系数
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15