基于Tetrolet变换和支持向量机的积雨云检测研究  

Research on Cumulonimbus Detection Based on Both Tetrolet Transform and Support Vector Machine

在线阅读下载全文

作  者:田文哲[1] 符冉迪[1] 金炜[1] 周颖[1] 

机构地区:[1]宁波大学,浙江宁波315211

出  处:《移动通信》2015年第12期72-77,共6页Mobile Communications

基  金:国家自然科学基金(61271399;61373068);宁波市自然科学基金(2011A610192;2013A610055);宁波市国际合作项目(2013D10011);宁波大学学科项目(XKXL1306)

摘  要:针对卫星云图的自然纹理特点,提出了一种新的积雨云检测方法。首先利用Tetrolet变换对多种几何特征都可以实现最优逼近的特性,提取云图的频谱纹理特征,并结合传统的亮温及亮温差特征,组成特征向量集;然后通过训练支持向量机(SVM)分类器,进行积雨云检测。对FY-2D卫星云图的实验结果表明,该方法对积雨云的检测准确率达到了95%以上,相较于传统方法,具有更强的泛化能力,对雷暴等灾害天气的预警具有较高的参考价值。According to the features of natural texture of satellite image, a novel cumulonimbus detection method was proposed. Initially, Tetrolet transform, which is able to optimally approximate multiple geometrical characteristics, was used to extract spectral texture feature of satellite image. Combined with features of traditional brighttemperature and bright-temperature difference, a feature vector set was formed. Then, by training support vector machine(SVM) classifi er, cumulonimbus detection was conducted. Experimental results of FY-2D satellite image demonstrate the accuracy of proposed method to detect cumulonimbus is more than 95%, compare with traditional methods, it has stronger generalization with higher referential value to alert disaster weather such as thunderstorm.

关 键 词:Tetrolet变换 支持向量机 积雨云检测 

分 类 号:TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象