检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学
出 处:《广东通信技术》2015年第6期62-64,70,共4页Guangdong Communication Technology
基 金:新一代宽带无线移动通信网国家科技重大专项(No.2012ZX03001012)
摘 要:由于目前语音增强方法或算法难以对语音频谱在时频域上的结构化信息进行有效建模和利用。然而,深度学习中的RBM、DNN等模型擅长对数据中的结构化信息进行建模,而且具有从数据的低层结构化信息提取更高层的结构化信息的能力。基于分类深度神经网络的语音增强,该方法对于低信噪比非平稳语音增强可得到高可懂度的增强语音,但语音音质损失严重。基于DNN的最小均方误差回归拟合语音增强方案,该语音增强方案还说明大语音数据训练能保证DNN较充分学习到噪声语音谱和干净语音谱之间复杂的非线性关系。
分 类 号:TN912.35[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222