检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赖小龙[1] 于文华[1] 赵燕东[1] 颜小飞[1]
出 处:《西北林学院学报》2015年第4期178-183,共6页Journal of Northwest Forestry University
基 金:中央高校基本科研业务费专项资金(BLX2013009);北京市教委共建项目
摘 要:针对我国林火监测现状,为加强近地面监测中的早期林火发现,提出采用多传感器数据融合算法对早期林火进行识别的方法。通过设计林火仿真试验,采集CO2浓度、CO浓度、烟雾浓度与空气温湿度等多传感器数据,并通过初步分析从中选取关键贡献率传感器数据。然后分别采用BP神经网络算法、神经模糊系统算法与支持向量机算法对数据进行识别与分析,并在每个算法中均设置三输入与九输入2种不同输入向量数以进行比较。最后通过定义的识别性能评价参数对识别效果进行比较,得出支持向量机算法在一定范围内能较好地实现对早期林火的识别。In order to improve the detection of early forest fire monitor near the ground,this paper proposed three algorithms of multi-sensor data fusion after analyzing the domestic status of forest fire monitoring.In the simulation experiment of forest fire,the data which included concentrations of carbon dioxide,carbon monoxide,smoke,air temperature and humidity were collected.After being analyzed preliminarily,the data of the mainly contributive sensors were picked out.And then three algorithms,which included BP neural network,fuzzy neural system and support vector machine were used to analyze the experiment data and identify the fire status.In the algorithms,three input vectors and nine input vectors were both set as inputs for comparison.At last three parameters of identification performance were defined to compare the identification's performance of the three algorithms.The conclusion was that the algorithm of support vector machines was able to perform a good identification of the early forest fire within a certain range.
关 键 词:林火识别 数据融合 BP神经网络 模糊神经系统 支持向量机
分 类 号:S762.3[农业科学—森林保护学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.123.251