基于颜色空间转换的颜色复原方法研究  被引量:6

Colour Recovery Method Based on Color Space Transformation

在线阅读下载全文

作  者:张菁[1] 杨应平[1] 章金敏[1] 

机构地区:[1]武汉理工大学,武汉430000

出  处:《包装工程》2015年第13期130-134,共5页Packaging Engineering

基  金:武汉理工大学自主创新基金(2014-ZY-163)

摘  要:目的研究解决因成像原理、元件性能、机械上的限制等因素导致的色彩失真与偏差的方法。方法通过对基于BP神经网络的颜色复原和基于全局多项式回归的颜色复原等2种方法进行对比研究,提出基于色调分区多项式回归的、由RGB到L*a*b*的颜色复原转换方法。结果基于BP神经网络的颜色复原得到的最小色差为2.8476,基于全局多项式回归的颜色复原得到的最小色差为2.857,二者相差仅0.3%;而经过分区后的多项式回归颜色复原得到的平均色差为2.206,比基于BP神经网络和全局多项式回归方法降低了23%左右的色差。结论经过分区后的多项式回归颜色复原方法能更有效地提高颜色复原的精度。This paper studied the methods dealing with the distortions and deviations in color which are caused by the factors such as the limitations on imaging-forming principle, device performance and machining controls This paper compared color restoration by the BP neural network versus the global polynomial regression. Then this paper presented an RGB to L*a*b*transformation method based on polynomial regression of each subspace through dividing the space into sub-domains in accordance with the hue. The calculated average color difference based on BP neural network was 2.8476,and the difference based on global polynomial regression was 2.857; the two had only 0.3% difference. However, after using polynomial regression of each subspace to recover the colors, the average color difference was 2.206, reduced by 23%compared with the above two methods. Recovering the colors by using polynomial regression of each subspace can effectively improve the precision of color restoration.

关 键 词:颜色复原 颜色空间转换 线性回归 BP神经网络 

分 类 号:TS801.3[轻工技术与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象