基于KPCA的轴承故障状态分类研究  被引量:2

Research on classification of bearing fault state based on KPCA

在线阅读下载全文

作  者:龚立雄[1] 黄敏[2] 

机构地区:[1]重庆理工大学机械工程学院,重庆400054 [2]重庆理工大学MBA教育中心,重庆400050

出  处:《现代制造工程》2015年第7期149-153,共5页Modern Manufacturing Engineering

基  金:重庆市基础与前沿研究项目(cstc2013jcyja6002);重庆市教委科学技术研究项目(KJ1400908)

摘  要:提出基于核函数主元分析的轴承故障分类方法。该方法通过计算轴承振动信号原始特征空间的核函数来实现原始特征空间到高维特征空间的非线性映射。通过振动测试仪获取轴承在正常、外圈破损和保持架损坏状态下的实验数据,比较主元分析与核函数主元分析的故障分类效果。实验表明,核函数主元分析更适合提取故障信号的非线性特征,对故障特征状态有更好的分类效果,并对分类器有较强的鲁棒性。An approach to bearing fault classification is presented based on kernel principal component analysis. In this approach, the integral operator kernel functions is used to realize the nonlinear map from the raw feature space of bearing vibration signals to the high dimensional feature space. The experimental data sets in the condition of new ball-bearing, the outer ring completely bro- ken, damaged cage with four loose elements were obtained from vibration testing instrument. The classification effect of Kernel Principal Component Analysis (KPCA) is compared based on the principal component analysis and kernel principal component analysis. The experimental results indicate that the method based on KPCA is more suitable for nonlinear feature extraction from fault signals. It can perform better fault classification ability and robust ness for various classifiers.

关 键 词:轴承 故障分类 核函数主元分析 特征提取 

分 类 号:TH11[机械工程—机械设计及理论] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象