检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆理工大学机械工程学院,重庆400054 [2]重庆理工大学MBA教育中心,重庆400050
出 处:《现代制造工程》2015年第7期149-153,共5页Modern Manufacturing Engineering
基 金:重庆市基础与前沿研究项目(cstc2013jcyja6002);重庆市教委科学技术研究项目(KJ1400908)
摘 要:提出基于核函数主元分析的轴承故障分类方法。该方法通过计算轴承振动信号原始特征空间的核函数来实现原始特征空间到高维特征空间的非线性映射。通过振动测试仪获取轴承在正常、外圈破损和保持架损坏状态下的实验数据,比较主元分析与核函数主元分析的故障分类效果。实验表明,核函数主元分析更适合提取故障信号的非线性特征,对故障特征状态有更好的分类效果,并对分类器有较强的鲁棒性。An approach to bearing fault classification is presented based on kernel principal component analysis. In this approach, the integral operator kernel functions is used to realize the nonlinear map from the raw feature space of bearing vibration signals to the high dimensional feature space. The experimental data sets in the condition of new ball-bearing, the outer ring completely bro- ken, damaged cage with four loose elements were obtained from vibration testing instrument. The classification effect of Kernel Principal Component Analysis (KPCA) is compared based on the principal component analysis and kernel principal component analysis. The experimental results indicate that the method based on KPCA is more suitable for nonlinear feature extraction from fault signals. It can perform better fault classification ability and robust ness for various classifiers.
分 类 号:TH11[机械工程—机械设计及理论] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.147.65