检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵素琴[1]
机构地区:[1]青海民族大学物理与电子信息工程学院,青海西宁810007
出 处:《西南民族大学学报(自然科学版)》2015年第4期498-500,共3页Journal of Southwest Minzu University(Natural Science Edition)
基 金:青海省应用基础研究计划项目(2015-ZJ-738)
摘 要:采用扩展的P-S方法.首先,假定受微扰的二维各向同性谐振子系统存在守恒量;其次,分别用未知函数R,S去乘以恒为零的1-形式的微分式;然后,通过比较各系数求得未知函数R和S.由此求得了受微扰的二维各向同性谐振子系统的两守恒量I1和I2.研究并讨论了微扰系统守恒量的物理意义.结果表明,二维各向同性谐振子在受到微扰后,由于对称性的降低,其守恒量也发生了变化,在Lagrange体系中,其对称性与守恒量的关系可由Noether定理给出.Extended Prelle-Singer method is used. This paper is based on the assumption that there are conserved quantities in two-dimensional harmonic oscillator system by perturbation, uses unknown functions R, S respectively to multiply a constant to zero 1-form style differential, and calculates coefficient R and S by comparing the integral multiplier. This paper discusses the physical significance of two conserved quantities. The results showed two-dimensional harmonic oscillator system by perturba- tion. Due to lower symmetry, the conserved quantity changed. In the Lagrange system, the relationship between symmetry and conserved quantities is given by Noether theorem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.92.44