检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094 [2]School of Information Technologies,University of Sydney
出 处:《计算机辅助设计与图形学学报》2015年第8期1475-1482,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(61273251;61401209);中国博士后科学基金(2014T70525;2013M531364);"十二五"民用航天技术预先研究项目(D040201);江苏省自然科学基金青年基金(BK20140790);江苏省普通高校研究生科研创新计划项目(CXZZ13_0211)
摘 要:传统的基于图像块划分的噪声强度估计方法通常先将图像划分为若干规则矩形图像块,并利用其中平滑的图像块进行噪声强度计算.然而当图像的结构信息比较丰富时,传统的方法往往会出现较大的偏差.为了解决该问题,提出一种基于自适应图像块划分的图像噪声强度估计方法.首先结合图像的空间邻域信息,将含噪图像划分为若干贴合图像局部边缘、纹理等结构信息的自适应图像块;然后根据所划分图像块的统计特性,通过散点图统计法选取出平滑的自适应图像块;最后利用平滑自适应图像块估计图像的噪声强度.实验结果表明,相比于已有的噪声估计方法,该方法在针对不同噪声强度、不同复杂程度的图像时更加准确和稳定.An image was firstly divided into regular rectangle blocks in conventional block division based noise estimation methods, and then the noise intensity was calculated using the homogeneous blocks. However, it always leads to an over-estimation of the noise intensity when dealing with highly textured images. To solve this problem, we proposed a new noise estimation method based on an adaptive image block division algorithm. Firstly, the noisy image was decomposed into adaptive image blocks by using the spatial neighborhood pixels, where the adaptive blocks can adhere to local image structures, such as image edges and textures; then the most homogeneous adaptive blocks were detected with a scatter-plot-based statistical method; finally, the image noise intensity was calculated with the selected homogeneous adaptive blocks. Experimental results demonstrate that the proposed method is more accurate and stable than existing methods when estimating noise from images with various complexities and different noise levels.
关 键 词:噪声估计 高斯噪声 自适应图像块 空间邻域信息 相似性度量
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151