检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓路[1] 李国民[1] 唐善成[1] 黄健[1]
机构地区:[1]西安科技大学通信与信息工程学院,陕西西安710054
出 处:《工矿自动化》2015年第8期51-55,共5页Journal Of Mine Automation
基 金:陕西省科技厅项目(2012K06-13);陕西省教育厅项目(2013JK1156);西安科技大学博士启动金项目(2013QDJ022)
摘 要:为了分析瓦斯涌出量预测结果的不确定性,提出一种基于相关向量机的估计方法:依据稀疏贝叶斯学习模型,计算瓦斯涌出量样本空间的稀疏相关支持向量和相应的超参数,再计算预测结果的均值和方差,从而得出瓦斯涌出量预测结果的概率分布和置信区间。分析结果表明,3组检验样本的平均预测误差为1.74%,其实际值均在置信度为97%的置信区间内,与实际情况相符,这说明采用该方法可以得出瓦斯涌出量预测结果的概率分布,且具有预测精度高、所需支持向量少的优点。In order to evaluate uncertainties of prediction results of gas emission, an estimation approach based on relevant vector machine was proposed. The sparse relevant support vector and its corresponding hyper parameters were calculated on sample space of gas emission by sparse Bayesian learning model. The mean and variance of prediction results were worked out, so probability distribution and confidence interval of prediction results of gas emission quantity can also be obtained. The analysis results show that the mean prediction error of three group testing samples is 1.74%, and real gas emission quantities are all in confidence interval of 97%. The prediction result is consistent with actual situation, it shows that the proposed approach can be used to get probability distribution of prediction result of gas emission, and has high prediction accuracy and requires less support vectors.
分 类 号:TD712.5[矿业工程—矿井通风与安全]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.157.139