高光谱技术在无损检测火龙果可溶性固形物中的应用  被引量:16

Application of Hyperspectrum Technology in Non-Destructive Measurement of Soluble Solid Content in Pitaya

在线阅读下载全文

作  者:罗霞[1,2,3] 洪添胜[2,3,4] 罗阔[2,3,4] 代芬[1,2,3] 梅慧兰[2,3,4] 

机构地区:[1]华南农业大学电子工程学院,广东广州510642 [2]华南农业大学南方农业机械与装备关键技术教育部重点实验室,广东广州510642 [3]国家柑橘产业技术体系机械研究室,广东广州510642 [4]华南农业大学工程学院,广东广州510642

出  处:《激光与光电子学进展》2015年第8期309-317,共9页Laser & Optoelectronics Progress

基  金:国家现代农业产业技术体系建设专项资金(CARS-27);教育部高等学校博士学科点专项科研基金(20124404120006)

摘  要:利用高光谱技术对火龙果可溶性固形物含量(SSC)检测进行研究,为火龙果内部品质无损检测提供科学方法。以火龙果为研究对象,对光谱数据进行预处理,应用连续投影算法(SPA)进行特征变量的选择,通过偏最小二乘法(PLS)和前馈反向传播神经网络法(BPNN)建立预测模型,分析了火龙果果皮对SSC模型预测精度的影响。实验结果表明:采用平滑去噪(MAS)效果最优,PLS模型的交叉验证相关系数(Rcv)为0.8635,交叉验证均方根误差(RMSECV)为0.6791,可提高火龙果可溶性固形物模型精度;通过SPA算法能够有效地对光谱数据进行降维处理,采用优选的15个特征变量建立的BPNN预测模型的预测相关系数(RP)为0.8411,预测均方根误差(RMSEP)为0.8171;果皮对建模结果会产生一定的影响,完整果PLS模型的(RP)为0.8999,RMSEP为0.7208;果肉PLS模型的RP为0.9304,RMSEP为0.5291,果肉SSC模型比完整果SSC模型的预测能力略高。研究结果表明基于高光谱技术采集的火龙果漫反射光谱进行SSC无损检测具有可行性。Using hyperspectrum technology to measure the soluble solid content (SSC) of pitaya can provide a scientific method for the non- destructive measurement of interior quality of pitaya. Pretreatment methods are used to process diffuse reflectance spectroscopy. The successive projections algorithm (SPA) is used to select characteristic variables. The partial least squares model (PLS) and back propagation neural network model (BPNN) are built to predict the SSC of pitaya. The influence of the pitaya peel on the SSC model prediction accuracy is also analyzed. The result of moving average smoothing (MAS) pretreatment method is best. The correlation coefficient of cross calibration (Roy) of the PLS model built is 0.8635, root mean square error of cross validation (RMSECV) reaches 0.6791. Based on the 15 characteristic variables, the correlation coefficient of prediction (Re) of the BPNN model for predicting SSC of pitaya is 0.8411, and the root mean square error of prediction (RMSEP) is 0.8171. The peel has influence on prediction results of models, Rp of the whole pitaya model is 0.8999, and RMSEP is 0.7208; Rp of the pitaya model without peel is 0.9304, and RMSEP is 0.5291. The prediction accuracy of the pitaya model without peel is higher than the whole pitaya model. The results indicate that the non-destructive measurement for SSC of pitaya based on hyperspectrum technology is feasible.

关 键 词:光谱学 高光谱技术 无损检测 连续投影算法 模型 火龙果 可溶性固形物 

分 类 号:O657.33[理学—分析化学] S123[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象