全矢LMD能量熵在齿轮故障特征提取中的应用  被引量:9

Full Vector LMD Energy Entropy in Gear Fault Feature Extraction

在线阅读下载全文

作  者:王洪明[1] 郝旺身[1] 韩捷[1] 董辛旻[1] 郝伟[1] 欧阳贺龙 

机构地区:[1]郑州大学,郑州450001

出  处:《中国机械工程》2015年第16期2160-2164,共5页China Mechanical Engineering

基  金:河南省教育厅自然科学研究项目(2011B460012);河南省教育厅科学技术研究重点项目(13A460673)

摘  要:齿轮故障信号具有非线性、非平稳特征,齿轮发生故障时,信号的能量结构随之改变,在不同的频带内能量不同。传统方法采用局部均值分解(LMD)提取振动信号的能量熵,将能量熵指标作为故障评判标准进行故障分类,依靠单一传感器信息源进行故障诊断,因而容易造成误诊、漏诊。全矢LMD能量熵法融合了双通道同源信息的回转能量,可降低故障误判率。通过实验模拟齿轮正常、齿根裂纹、断齿、缺齿等4种状态,验证了全矢LMD能量熵作为故障特征能达到很好的故障分类效果。Gear vibration signals in the events of failure were often non-stationary,non-linear.En-ergy structure would change in the fault signals,leading to different energy in different frequency bands.LMD was used to extract energy entropy of the vibration signals,and energy entropy was used as failure evaluation standards for fault classification.It is easy to be misdiagnosed with the traditional single channel signal diagnostic method.Full vector LMD energy entropy integrated two-channel ho-mologous informations of vibration signals,and reduced the misdiagnosis rate.Through experiments the gear normal state,tooth root crack,broken teeth,missing teeth were simulated,and it is proved that with full vector LMD energy entropy as fault feature can achieve good fault classification results.

关 键 词:齿轮 非线性 能量熵 全矢 故障特征 

分 类 号:TH133[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象