检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
出 处:《工程力学》2015年第8期236-242,共7页Engineering Mechanics
基 金:国家青年科学基金项目(51209049);黑龙江省青年科学基金项目(QC2012C033;QC2011C031);黑龙江省博士后科研启动金项目(LBH-Q12127)
摘 要:超空泡航行体在高速航行过程中大部分表面被空泡包裹,航行体尾部与空泡间相互作用产生剧烈变化的滑行力,该滑行力是导致航行体失稳的主要因素。由于航行体与空泡相互作用机理的复杂性,使得滑行力表达式存在很大的建模差异和参数不确定性,针对这一问题,该文首先通过一系列变换将系统模型表示为线性环节和非线性环节反馈连接的形式,然后基于圆判据定理给出了航行体绝对稳定的充分条件,并依据该条件采用状态反馈极点配置方法设计控制器。仿真结果表明,该控制器针对滑行力建模不确定性和参数不确定性的情况,可以通过合理配置闭环极点实现系统对不同非线性条件的绝对稳定。In a cruise phase, a supercavitating vehicle is enveloped almost completely by a cavity, the interaction between the cavity wall and the tail of the body generates a planing force which changes rapidly, and this force is the main factor that causes the unstability of the bodies. Because of the complexity of interaction mechanism, it is nearly impossible for one to work out the planing force expression without model differences or parameter uncertainty. In order to solve this problem, this paper applies a series of transformation, so that the system model is expressed as a form of feedback connections which contains linear parts and nonlinear parts, then a sufficient condition for the absolute stability of the system is given, based on a circle criterion theorem. According to the condition, a state feedback pole assignment method is adopted to design the controller. The simulation results show that for different nonlinear characters, like model uncertainty and parameter uncertainty of a planing force, the system with this controller can get absolute stability through the rational allocation of closed-loop poles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42