基于ALOS遥感影像植被分类方法的比较研究  

ALOS Remote Sensing Classification of Vegetation Based on Different Classification Methods

在线阅读下载全文

作  者:滕全晓 徐天蜀[1] 

机构地区:[1]西南林业大学林学院,昆明650224

出  处:《林业资源管理》2015年第4期69-72,共4页Forest Resources Management

基  金:国家自然科学基金项目(31260156)

摘  要:以云南省宜良县ALOS影像为基础数据,利用最大似然法、支持向量机方法和面向对象的支持向量机方法对ALOS影像进行植被分类研究。实验结果:最大似然法分类精度为79.33%,支持向量机方法分类精度为82.25%,面向对象的支持向量机分类方法精度为86.13%,面向对象的支持向量机分类方法取得较好的分类效果。研究结果可为中高分辨率遥感影像分类研究提供参考。Based on the data of ALOS image of Yiliang County,Yunnan Province,this paper discusses the use of the maximum likelihood method,support vector machine method and object-oriented support vector machine(SVM).The results show that maximum like-lihood classification accuracy is 79.33%,SVM classification accuracy 82.25%,oriented object based support vector machine classification accuracy 86.13%,and oriented-object based support vector machine classification method has better classification results.The results can provide a reference for the study of high-resolution remote sensing image classifi-cation.

关 键 词:ALOS 最大似然法 支持向量机 面向对象 

分 类 号:S771.8[农业科学—森林工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象