检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2015年第16期252-258,共7页Computer Engineering and Applications
摘 要:针对工程领域中的非线性、多极值和多维度等复杂优化问题,提出把遗传算子引入粒子群算法中,采用粒子搜索变异,交互学习的方法。方法综合了粒子群算法原理简单、搜索速度快,遗传算法全局搜索能力强的特点,实现了算法避免陷入局部最优解,以获得较高的精度和执行力。通过对比分析,此交互学习策略在求解精度、效率和处理多种复杂度问题等方面都有优越性,特别适用于精确求解和解决复杂优化问题。实例证明,算法可以解决基于机械动力学理论的铣削参数优化中非线性、多极值、多维度的工程问题。There are many non-linear,multi-extremum and multidimensional complicated problems in the applications of the engineering field.This paper puts forward the Genetic Algorithm(GA)into the Particle Swarm Algorithm(PSO),and uses the method of mutual learning to solve those problems.This method integrates the particle swarm algorithm's simple theory and quick convergence with the genetic algorithm's global search ability to get higher convergence precision,stronger execution and avoid falling into local optimal solution.The comparative analysis results show the parallel learning strategy has great advantages in terms of accuracy,efficiency and processing ability of different complexity problems.This algorithm is especially applicable to solve accurately and complex problems.Example shows that this algorithm can solve the nonlinear,multiple maximum and multi-dimension engineering problem existed in the milling parameters optimization solved by the machine dynamics theory.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28