检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘海峰[1] 张超[1] 林福良[1] 黄可嘉[1]
机构地区:[1]北京控制与电子技术研究所信息系统工程重点实验室,北京100038
出 处:《计算机系统应用》2015年第9期118-123,共6页Computer Systems & Applications
摘 要:基于特征点的图像匹配被广泛应用于图像配准、目标识别与跟踪领域,目前,两阶段匹配(即先粗匹配,后精匹配)是最常用的方法,然而,两阶段匹配存在两方面的问题,一方面,粗匹配阶段对精匹配阶段的影响是不可逆的,即粗匹配的效果决定了精匹配的最优精度;另一方面,精匹配得到的后验知识没能反馈给粗匹配阶段,以修正粗匹配结果.为此,提出一种基于迭代修正的图像特征点匹配算法,该算法将精匹配得到的后验知识反馈给粗匹配阶段,从而修正粗匹配结果,使得粗匹配阶段得到更多的正确匹配对,减少漏匹配特征点对,这样经过多次迭代,能够得到更多的正确匹配特征点对.实验表明,提出的算法比经典的两阶段匹配方法能够提取更多的正确匹配特征点对,减少了漏匹配,并提升了复杂图像匹配的稳定性.Based on feature point, image matching has been widely applied in image registration, object recognition and tracking field. Now, two phase feature point matching(i.e., first coarse matching, then precise matching) is the most commonly used method. However, the two phase matching exists two issues, on the one hand, the impact of coarse matching for precise matching is irreversible, that is, the results of coarse matching will determine the optimal precision of precise matching. On the other hand, the post knowledge which can be obtained from precise matching cannot be regarded as feedback information to coarse matching, which can revise mismatching. Hence, the paper proposes a new feature point matching algorithm which is based on iterative correction. In the algorithm, post knowledge of precise matching is regarded as feedback information to coarse matching. The coarse matching can obtain more correct matching pairs and decrease missing correct matching pairs. After much iterations, better matching can be obtained. Experiments show that the proposed algorithm can extract more matching pairs than traditional two phase method and improves the matching stability.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15