检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山职业技术学院信息工程学院,广东中山528404 [2]武汉大学计算机学院,武汉430072
出 处:《电讯技术》2015年第8期836-841,共6页Telecommunication Engineering
基 金:中央高校基本科研业务费专项资金资助项目(3101003)~~
摘 要:针对现有的独立成分分析法分离混合混沌信号精度不理想的问题,提出了一种新的混沌信号盲分离方法。该方法以求解最优解混矩阵为目标,利用峭度构造目标函数,将混沌信号的盲源分离转化为一个优化问题,并用萤火虫算法求解。同时,通过预白化和正交矩阵的参数化表示降低优化问题的维数,能有效提高分离精度。仿真结果表明,无论是处理混合的混沌映射信号还是混合的混沌流信号,该方法都能快速收敛,并且其分离精度在各项实验中都优于独立成分分析法等现有的盲源分离方法。Existing independent component analysis(ICA) method is not quite accurate when dealing with chaotic signals. To address this issue, a new blind source separation method based on the firefly algorithm is proposed. Kurtosis is used to design the objective function so that the blind source separation issue is transformed into an optimization problem and the solution is obtained by the firefly algorithm. In addition, pre-whitening process and parameterized representation of orthogonal matrices is employed to reduce the dimension of the optimization process. Therefore, better separation accuracy can be achieved. Simulation results show that the proposed method converges very fast when dealing with linearly mixed chaotic signals. In every simulation test, the proposed method is more accurate than ICA method and other blind source sep- aration methods.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147