检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段刚[1,2] 陈莉[3] 李引珍[1] 何瑞春[1] 朱昌锋[1]
机构地区:[1]兰州交通大学交通运输学院,甘肃兰州730070 [2]西北交通经济研究中心,甘肃兰州730070 [3]兰州城市学院数学学院,甘肃兰州730070
出 处:《铁道学报》2015年第9期8-16,共9页Journal of the China Railway Society
基 金:国家自然科学基金(60870008);甘肃省财政厅基本科研业务费(213060);兰州交通大学青年科学研究基金(2011-314)
摘 要:对带有软时间窗的铁路集装箱空箱调运问题,将走行时间分为确定和不确定2类,首先建立鲁棒软时间窗模型,避免传统鲁棒方法过于保守的缺陷,然后构造基于鲁棒软时间窗的空箱调运问题通用模型。通过等价变换和对偶变换,将鲁棒软时间窗模型转换为对应的线性规划,再将空箱调运模型转换为一般的整数线性规划,并根据模型的特点得到解的一些性质,为解决这类问题提供一般框架。通过算例对不确定走行时间的数量进行灵敏度分析,结果表明,只有非常少的不确定走行时间对最优解产生影响。To address the issue of railway empty container allocation with soft time window,with empty con-tainer transportation time being classified into certain and uncertain time,the robust soft time window model was first established to avoid the conservative deficiency of conventional robust optimization.Then the univer-sal model on empty container allocation with robust soft time window was proposed.The robust soft time win-dow model was transformed to corresponding linear programming by equivalent transformation and dual trans-formation.Subsequently,the empty container allocation model with robust soft time window was transformed to general integer linear programming.Based on the characteristics of the model,certain properties of the solu-tion were obtained to establish a general framework for solving such problems.The sensitivity analysis on the quantity of uncertain transportation time in a numerical example demonstrated that only very little uncertain transportation time could make an influence on the optimal solution.
关 键 词:空箱调运 不确定走行时间 鲁棒软时间窗 对偶理论 灵敏度分析
分 类 号:U292[交通运输工程—交通运输规划与管理] U294[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.28.64