检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学CAD&CG国家重点实验室,杭州310058
出 处:《计算机辅助设计与图形学学报》2015年第9期1775-1785,共11页Journal of Computer-Aided Design & Computer Graphics
基 金:国家科技支撑计划(2012BAH62F02)
摘 要:为了提高虚拟行人在疏散仿真中路径规划的智能性,在微观仿真框架下提出一种基于个体心理的实时路径规划方法.该方法根据真实行人的认知模式建立以个体为中心的环境认知域,动态获取其周围环境的人群密度、危险强度等相关信息;进行路径规划时,采用mental cost综合考虑了疏散时间耗费、路径安全性以及自主行动能力等因素对路径选择的影响,为每个个体生成一条其主观认为"最优"的路径;在疏散过程中,虚拟行人能够根据动态更新的现场信息,通过重规划对初始疏散路径进行调整.基于个体认知域与mental cost在导航图中搜索路径,提出了mental A*搜索算法,可以进行实时规划.最后针对不同疏散场景进行了仿真实验,验证文中方法的有效性与可扩展性.Path planning is one of the critical issues of evacuation simulations. We present a real-time path planning approach under the microscopic simulation framework. Based on his/her cognitive ability, a cogni-tive field around each pedestrian is constructed during simulation. The environment information perceived by each individual is recorded in different accuracy in different sub-regions of his/her cognitive field. During path planning, the pedestrian will account factors including time-cost, safety of the path and the crowd flow etc., which we model as mental cost, based on the information provided by the cognitive field to evaluate the priority of each candidate path. An algorithm is developed to estimate the mental cost to select the best evacuation path. During simulation, the cognitive field of each pedestrian will keep updated and the pedes-trian can adjust his/her original evacuation path if necessary. We adopt Mental A* algorithm to search the path from the navigation graph. Experiments regarding different scenarios demonstrate the effectiveness of our approach.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.7.155