GPU并行实现多特征融合粒子滤波目标跟踪算法  被引量:2

GPU Parallel Particle Filter Object Tracking Algorithm Based on Multiple Feature Fusion

在线阅读下载全文

作  者:赵嵩[1] 徐彦[2] 曹海旺[1] 杨恒[3] 

机构地区:[1]郑州航空工业管理学院,河南郑州450015 [2]郑州铁路职业技术学院,河南郑州450052 [3]西安应用光学研究所,陕西西安710065

出  处:《微电子学与计算机》2015年第9期153-156,160,共5页Microelectronics & Computer

基  金:国家自然科学基金资助项目(71371173);航空科学基金资助项目(2012ZC55006)

摘  要:提出了一种多特征融合粒子滤波跟踪算法,并利用GPU(Graphic Processing Unit)技术对算法进行了并行优化.针对单一特征描述目标模型的缺陷,此算法采用了具有互补性的灰度与梯度直方图特征建立目标模型,从而提高粒子滤波算法跟踪的稳定性和精度.同时,针对粒子滤波计算量大的缺点,此算法对粒子滤波进行了基于GPU的并行优化设计和实现,从而提升跟踪算法的计算速度.可以满足算法的实时性应用.A parallel particle filter object tracking algorithm is given out,which is based on multiple feature fusion with the help of GPU (Graphic Processing Unit)technology.Due to the limitation of the model representation based on single visual feature,two complementary visual features,which are gray histogram and gradient histogram,are used in the algorithm to improve the tracking stability and accuracy.Moreover,to handle the large amount computation cost of the particle filter,a GPU parallel optimized scheme is designed to improve the algorithm speed. and can meet the real-time application requirement.

关 键 词:目标跟踪 粒子滤波 多特征融合 GPU 并行 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象