中心Hlder条件下求解重根的Halley算法的收敛半径  被引量:1

Convergence Radius of Halley's Method for Multiple Roots under Center-Hlder Continuous Condition

在线阅读下载全文

作  者:刘素珍[1] 

机构地区:[1]如皋高等师范学校数理与信息技术系,江苏如皋226500

出  处:《淮海工学院学报(自然科学版)》2015年第3期7-10,共4页Journal of Huaihai Institute of Technology:Natural Sciences Edition

摘  要:鉴于具有积分余项的Taylor展开式的处理方法的简单性和有效性,用该方法来讨论求解重根的Halley算法的收敛半径问题,给出在仅仅假设方程的m+1阶导数满足中心Hlder的条件下Halley算法的收敛半径表达式.文献[6]中已经估算出了Halley算法的收敛半径,但没有给出该方法的优缺点.从数值角度对此结论进行分析,说明两种处理方法的条件和结论的不同.In terms of the simplicity and effectiveness of the processing approach based on the Taylor expansion with integral remains, in this thesis, we will try to use it to give the estimate of the convergence radius of Halley's method for multiple roots. The convergence radius of Halley' s method will be given only under the condition that the (m+l)th derivative of function satisfies center-HtSlder continuous condition. The 6th reference literature has already estimated the con- vergence radius of Halley's method, but has not given the advantages and disadvantages of this method. Some numerical tests are also given to verify our theoretical analysis, and show the differences of conditions and conclusions between these two processing approaches.

关 键 词:非线性方程 重根 收敛半径 Halley方法 中心Holder条件 泰勒展开式 

分 类 号:O241.7[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象