检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘素珍[1]
机构地区:[1]如皋高等师范学校数理与信息技术系,江苏如皋226500
出 处:《淮海工学院学报(自然科学版)》2015年第3期7-10,共4页Journal of Huaihai Institute of Technology:Natural Sciences Edition
摘 要:鉴于具有积分余项的Taylor展开式的处理方法的简单性和有效性,用该方法来讨论求解重根的Halley算法的收敛半径问题,给出在仅仅假设方程的m+1阶导数满足中心Hlder的条件下Halley算法的收敛半径表达式.文献[6]中已经估算出了Halley算法的收敛半径,但没有给出该方法的优缺点.从数值角度对此结论进行分析,说明两种处理方法的条件和结论的不同.In terms of the simplicity and effectiveness of the processing approach based on the Taylor expansion with integral remains, in this thesis, we will try to use it to give the estimate of the convergence radius of Halley's method for multiple roots. The convergence radius of Halley' s method will be given only under the condition that the (m+l)th derivative of function satisfies center-HtSlder continuous condition. The 6th reference literature has already estimated the con- vergence radius of Halley's method, but has not given the advantages and disadvantages of this method. Some numerical tests are also given to verify our theoretical analysis, and show the differences of conditions and conclusions between these two processing approaches.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38