检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆工商大学机械工程学院,重庆400067 [2]重庆工商大学计算机科学与信息工程学院,重庆400067
出 处:《计算机科学》2015年第8期319-322,共4页Computer Science
基 金:重庆市教委科研项目(KJ120714);重庆市社会科学规划项目(2012YBCB055);重庆市教委重点研究项目(112081)资助
摘 要:传统食品包装印刷缺陷检测系统采集的实时图像和标准图像在空间上存在着较大的差异,在缺陷检测前首先要将实时图像与标准图像配准,再进行图像缺陷检测与识别。针对传统检测方法检测时间长、分拣效率低、漏检率高和对人视觉要求高等缺点,在图像增强处理的基础上,提出了一种适用于食品包装印刷缺陷检测的图像配准算法。该算法利用小波变换改进算法对图像边缘进行检测,有效地解决了噪声所产生的误检问题。实验仿真结果表明,该算法具有较高的稳定性和可靠性,能够精确检测出小于0.1mm的刀丝和拉条等细微缺陷,实现了食品包装印刷品的无损检测。There is a big difference in space between the real-time image collected by traditional printing defects detection system in food packaging and standard image. Before defects detection, the real-time image is registered with the standard image, and then image defects are detected and identified. In view of such defects with long time detection, low sorting efficiency, high missing rate and high requirements for human vision of traditional detection methods, an image registration algorithm for printing defects detection in food packaging based on image enhancement processing was proposed. And the application of improved algorithm of wavelet transformation to image edge detection has effectively solved the problems of error detection caused by noises. The experimental simulation results indicate that this system is highly stable, and reliable and can precisely detect such micro-defects as knife fuse and braces less than 0. 1 mm, which realizes non-destructive detection in food packaging printings.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.23.30