检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学电子信息与控制工程学院,北京100124
出 处:《北京工业大学学报》2015年第9期1308-1313,共6页Journal of Beijing University of Technology
基 金:城市轨道交通北京实验室资助项目(JF002011201401)
摘 要:为了限制惯导误差的增长,根据人行走的规律提出了一种基于个人的多种步态模式下的伪自适应阈值零速检测法.通过加速度方差和陀螺模值的平方和作为检测依据,设置一个滑动的时间窗口来判断行人的运动模式,以此来自调节阈值的大小,对跑、走、台阶等运动模式都具有稳定可靠的检测效果.由于航向角不可观测,无法使用卡尔曼零速修正算法对航向角进行修正.采用融合室内地图的粒子滤波算法使穿越墙壁的粒子权重为零,对于大误差数据,通过自适应重采样的方法来有效避免粒子的严重退化现象.实验结果表明:速度在3 m/s内零速检测的准确率达到97%以上.采用融合室内地图的粒子滤波算法后,正常行走约210 m的距离室内定位误差从原来的2.3 m降低到0.2m.To limit error growth of the indoor navigation system(INS),according to the walking regulars,based on personal multi-gait modes,a zero velocity detection of pseudo-adaptive threshold value was studied.Through the acceleration variance and the sum of the squares of the gyro modulus value as a test basis,a sliding time window was set to determine the movement patterns for adjusting the size of the threshold,and the testing results was stable and reliable for run,walk and step.Because the course angle is unobserved,the Kalman zero velocity correction algorithm cannot modify the course angle.Using the particle filter algorithm of fusing indoor maps,the particle weight across the wall is zero.For larger error data,the particle degeneration phenomenon can be effectively avoided by using the method of adaptive resampling.The experimental results show that when the speed is within 3 m/s,the zero velocity detection accuracy attains more than 97%.After using the particle filter algorithm of fusing indoor maps,about 210 m distance to walk normally,the indoor positioning error decreases from the original 2.3 m down to 0.2 m.
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51