检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付华[1] 刘汀[1] 张胜强[1] 赵东红[1] 丁冠西[2]
机构地区:[1]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105 [2]国网辽宁省电力有限公司辽阳供电公司,辽宁辽阳11100
出 处:《传感技术学报》2015年第8期1255-1261,共7页Chinese Journal of Sensors and Actuators
基 金:国家自然科学基金项目(51274118);辽宁省教育厅基金项目(L2012119);辽宁省科技攻关项目(2011229011)
摘 要:针对煤矿瓦斯涌出量的多影响因素预测问题,以多传感器的瓦斯监测系统采集处理后的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的组合人工神经网络的模型动态预测新方法。采用先聚类、再分类建模和预测的方法,解决了由于训练样本有限和训练样本点分散所导致的预测精度降低的问题,并通过矿井监测到的各项历史数据进行试验。结果表明,与其他预测模型相比较,该模型的预测精度更高,泛化能力更强。预测平均相对误差为2.16%,均相对变动值ARV为0.005 9,均方根误差RMSE为0.131 1,有效地实现了对煤矿绝对瓦斯涌出量的动态预测,有较高的实用价值。A new model dynamic prediction method of combined artificial neural network combining self-organizing feature maps and multi-variable radial basis function is presented,which adopts collecting and processing data by multi-sensor gas monitoring system as samples,as a solution of the multi-factor prediction problem of coal mine gas emission. The modeling and prediction method are utilized as clustering firstly,and then it is utilized as classification to solve prediction accuracy loss,which is caused by the number limitation of training samples and their dispersion. The presented method is tested on the historical data monitored in the mine,and simulation results show that,the presented model has a higher prediction accuracy and a better performance of generalization with average prediction error 2.16%in comparison with other prediction models,and then average relation variance is 0.005 9 and root-mean-square error is 0.131 1. Therefore,it can be approved that the presented model realizes the dynamic prediction of absolute emission quantity of coal mine gas effectively and has a relatively high practicality.
关 键 词:多传感器 瓦斯涌出量 自组织特征映射神经网络 径向基函数 动态预测
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70