检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周丰[1] 刘忠波[2,3,4] 房克照[3,4] 焦子峰
机构地区:[1]中交水运规划设计院有限公司,北京100007 [2]大连海事大学交通运输管理学院,辽宁大连116026 [3]大连理工大学海岸和近海工程国家重点实验室,辽宁大连116024 [4]长沙理工大学水沙科学与水灾害防治湖南省重点实验室,湖南长沙410076
出 处:《水运工程》2015年第9期10-15,共6页Port & Waterway Engineering
基 金:国家自然科学基金(51009018);国家创新研究群体科学基金(50921001);水沙科学与水灾害防治湖南省重点实验室基金(2012SS02;2013SS02)
摘 要:基于高精度双层Boussinesq方程,建立了聚焦波的时域波浪数值水槽。时间积分采用混合4阶Adams-BashforthMoulton预报-校正格式,聚焦波生成则采用累加不同频率规则波的内部造波源项法。针对Baldock等的聚焦波试验进行数值计算,计算结果与试验数据吻合较好。利用验证后模型进一步考察了非线性对数值计算聚焦波的影响,其中考虑了强非线性、弱非线性以及线性3种情况,结果表明非线性对精确模拟聚焦波至关重要,强非线性模型给出的结果最好,弱非线性次之,线性最差。The predictor-corrector-iteration algorithm in the framework of finite difference method was applied to solve one-dimensional version of two-layer Boussinesq equations, creating a numerical wave tank for focusing wave in time domain. A fourth-order composite Adams-Bashforth-Mouton scheme was adopted for time integration. The internal wave method of summing multi-frequency wave components was used to realize wave focusing in computational domain. Numerical experiments were conduct to reproduce the laboratory measurements of Baldock, and the agreements between the computed results and experimental data were good. Further discussions were carried out to investigate nonlinear effect on the computed results of focusing wave by considering different levels of nonlinearity ( strong nonlinearity, weak nonlinearity and linearity) in the numerical model. The results show that nonlinearity plays a very important role in accurately modeling focusing wave. The present model with strong nonlinear terms presents the best results, the weakly nonlinearity presents reasonable results, while the linear model presents the worst.
关 键 词:聚焦波 BOUSSINESQ方程 色散性 非线性 数值模型
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.79.7