检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖进胜[1] 刘婷婷[1] 张亚琪 彭红[1] 鄢煜尘[1]
机构地区:[1]武汉大学电子信息学院,湖北武汉430072 [2]思杰系统信息技术(北京)有限公司南京分公司,江苏南京210008
出 处:《湖南大学学报(自然科学版)》2015年第10期127-132,共6页Journal of Hunan University:Natural Sciences
基 金:国家自然科学基金资助项目(61471272);江苏省自然科学基金资助项目(BK2011345)~~
摘 要:针对背景场景重复显现问题,提出了一种基于历史背景的混合高斯模型(History Background-based GMM,HBGMM).相较于传统的混合高斯模型,该模型对历史背景模型进行标记,并通过判决匹配次数快速调整历史背景模型的学习率.同时对模型权重低于阈值下限历史模型和非历史模型进行区别处理,用该方法更新模型权重从而降低误检率,使历史模型尽量避免误删除.实验结果表明,本文提出的基于历史背景的混合高斯背景模型能够实现记忆背景的功能,从而更快地适应场景的变化,减少前景误判.Classical Gaussian mixture model (GMM) can describe the muhimodal state of the video pixds and GMM has certain robustness in dealing with complex scenes, such as slowly changing lighting. However, it still causes false detection because of the change of pixel values in the same position when the background of the scene is reexposed after being covered. To solve the repetitive background problem, a Gaussian mixture model based on history background (HBGMM) was proposed in this paper. Compared with traditional Gaussian mixture model, this model can quickly adjust the learning rate by marking the historical background and counting the matched times. We also processed differently between the historical and non-historical model weights lower than threshold to update the model weights to reduce the false detection rate. Experiment results show that the proposed HBGMM can realize the function of remembering the scenes and adapt to the changes of scenes more quickly, thus decreasing the false detection rate.
分 类 号:TN919[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.37.22