一种含噪音处理的K-means聚类算法  被引量:5

A K-MEANS CLUSTERING ALGORITHM WITH NOISE PROCESSING

在线阅读下载全文

作  者:陆进[1] 郭跃飞[1] 

机构地区:[1]复旦大学计算机科学技术系,上海201203

出  处:《计算机应用与软件》2015年第10期265-268,共4页Computer Applications and Software

基  金:国家科技支撑计划项目(2012BAH59F04);上海市科委计划项目(12dz1500203;12511505303)

摘  要:K-means作为经典的聚类算法,对噪音很敏感。在实际应用中,数据通常包含较多噪音,聚类难以得到良好的效果。提出一种含噪音处理的K-means聚类算法。算法将原空间动态地划分成若干个区域,利用对应的区域密度加权计算样本与每个区域质心的相似度矩阵,作为K-means的输入。该矩阵有效描述了数据的分布信息,同时实现了特征的降维,能更有效处理带噪音数据的聚类任务,更适用于数据分布复杂的情况。实验结果证实了此算法的有效性。K-means clustering as classical clustering algorithm is sensitive to noise.In practical applications,the data usually contain many noises and this makes it difficult to obtain a good clustering result.This paper proposes a K-means clustering algorithm with noise pro-cessing.The algorithm divides original space to several regions dynamically,and calculates the weighted similarity matrix of sample and each regional centroid using correlated regional density and uses it as the input of K-means algorithm.The matrix effectively describes the distribu-tion information of data and at the same time realises the dimensionality reduction of features so that the clustering tasks with noise data can be processed more effectively.The proposed algorithm is more suitable for the situation of complex data distribution.Experimental result proves the effectiveness of the algorithm.

关 键 词:抗噪 聚类 KD  密度 质心 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象