检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄海波[1] 李人宪[1] 杨琪[2] 丁渭平[1] 杨明亮[1]
机构地区:[1]西南交通大学机械工程学院,四川成都610031 [2]西南交通大学信息科学与技术学院,四川成都610031
出 处:《西南交通大学学报》2015年第5期776-782,共7页Journal of Southwest Jiaotong University
基 金:中央高校基本科研业务费专项资金资助项目(SWJTU12CX036)
摘 要:针对人工经验提取特征进行减振器异响鉴别的复杂性与不可扩展性的问题,分析了深度信念网络(deep belief networks,DBNs)在减振器异响鉴别中的应用,并结合减振器整车与台架试验提出了完整的减振器异响鉴别流程.该方法只需将收集到的减振器活塞杆顶端振动加速度信号作为输入,经过DBNs模型逐层特征学习便可进行减振器异响鉴别.同时将鉴别结果与经典的BP神经网络、支持向量机以及传统的3种人工特征提取方法进行对比分析.结果表明:在输入仅为原始信号的条件下,深度信念网络模型对减振器异响鉴别的准确率为96.7%,表明了深度信念网络在减振器异响甄别中的优越性,具有广泛的工程应用前景.Considering the complexity and non-expandability of extracting abnormal noise features of shock absorbers by experience and manual work,applications of deep belief networks( DBNs) to identification of vehicle suspension shock absorber's abnormal noise are discussed,and a complete identification process of shock absorber abnormal noise is proposed by combining the shock absorber's road test with its rig test. The method only needs to take the vibration acceleration signal of the shock absorber piston rod as input,and then process the signal by learning layer-wise features in the DBNs model to classify the sounds of shock absorbers. In addition,the identification accuracy by DBNs is compared with that by the classical BP neural network,support vector machine,and other three traditional abnormal noise identification methods. The results show that when only the original signal is used as input,the classification accuracy by DBNs is 96. 7%,which is higher than that by the other five methods. This illustrates the superiority of the DBNs algorithm in identifying the abnormal noise of shock absorbers and may imply a wide prospect in engineering application.
关 键 词:减振器 异响鉴别 深度学习 玻尔兹曼机 深度信念网络
分 类 号:U463.1[机械工程—车辆工程] U467.1[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175