检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付龙飞[1] 田广来[1] 王鹏[1] 梁波[1] 皇甫宜耿[1]
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《西北工业大学学报》2015年第5期770-774,共5页Journal of Northwestern Polytechnical University
基 金:陕西省国际科技合作重点项目计划(20121203202758)资助
摘 要:针对含有参数不确定的非线性系统,提出了一种自适应滑模控制(ASMC)算法。根据飞机地面滑跑特性的受力分析,建立了飞机防滑刹车系统(ABS)的地面动力学模型;通过对飞机防滑刹车系统模型的非线性分析,针对非线性系统的不确定参数提出了以双极性sigmoid函数为趋近函数的滑模控制(SMC)算法,并针对切换增益和边界层设计了自适应控制算法以减小滑模控制的抖振现象;最后采用李雅普诺夫理论分析了设计的自适应滑模算法的敛散性。MATLAB仿真结果表明,自适应滑模控制算法相较于传统的滑模算法能在更短的时间内获取跑道的最大结合系数,达到最佳滑移率,缩短刹车时间。An adaptive sliding mode control (ASMC) algorithm was proposed parameter uncertainty. The complex characteristics of aircraft antiskid braking to control the nonlinear system with system (ABS) were analyzed. Ac- cording to uncertainty about the system, a sliding mode control (SMC) algorithm was presented with bipolar sig- moid function reaching law. The sliding mode gain factor and boundary layer were discussed and its adaptive algo- rithm was designed in order to decrease the chattering. The convergence of the ASMC algorithm was analyzed with Lyapunov theory at last. The results from simulation indicate that ASMC strategy, compared with the traditional SMC strategy, makes the ABS obtain the maximum friction coefficient in a shorter time. Additionally it is shown that the system works under optimal slip ratio and shortens the braking time.
分 类 号:V226[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222