检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘俊[1]
机构地区:[1]商洛学院电子信息与电气工程学院,陕西商洛726000
出 处:《工业仪表与自动化装置》2015年第5期97-100,共4页Industrial Instrumentation & Automation
摘 要:传统的PID神经网络,由于初始权值随机选择,权值学习采用BP算法,所以容易陷入局部极值,进而导致该方法无法得到高精度的控制结果。该文提出采用搜寻者优化算法优化PID神经网络初始权值,再把最优初始权值带入PID神经网络,实现解耦控制。对一个耦合系统进行仿真实验,结果表明,与目前控制效果较好的粒子群算法优化PID神经网络相比,该算法收敛速度更快、稳态误差更小,同时也具有良好的自适应和抗干扰能力,能够实现快速、高精度、稳定的解耦控制。Traditional PID neural network , in which initial weights are randomly selected and weight learning method uses BP algorithm , tends to fall into local extremum , so the method cannot get precise control.Seeker optimization algorithm(SOA) is adopted to optimize the initial weights of PID neural net-work, and the decoupling control is realized by putting the optimal initial weights into PID neural net -work.A coupling system is simulated , and the result shows that , compared with PID neural network which is based on particle swarm algorithm ( PSO) , PID neural network which is based on SOA ( SOA-PIDNN) shares better control effect and smaller steady -state error;moreover, SOA-PIDNN is endowed with adaptive and anti -interference ability , which facilitate rapid , accurate and stable decoupling con-trol.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112