ACO-BP模型在某实验室热舒适预测中的研究  

Research ACO-BP in a Laboratory Model to Predict the Thermal Comfort

在线阅读下载全文

作  者:赵敏华[1] 闫婷[1] 苏蕤[1] 

机构地区:[1]西安建筑科技大学信息与控制工程学院

出  处:《建筑热能通风空调》2015年第5期73-76,共4页Building Energy & Environment

基  金:陕西省教育厅自然科学研究项目基金(12JK0999);西安建筑科技大学科技计划项目(JC1215)

摘  要:以热舒适指标PMV作为空调控制系统的控制目标,能够很大程度上实现舒适与节能的统一。基于此研究了一种蚁群神经网络预测分类模型,并给出了详细的设计步骤和部分Matlab设计代码,最后采用某大学实验室数据库中的夏天数据集进行了验证。结果表明,采用蚁群算法对BP神经网络进行整定后,不仅克服了BP算法容易陷入局部最优的缺点,也加快了蚂蚁的收敛速度,提高了热舒适预测分类的准确性。Taking thermal comfort index PMV as a control target of air-conditioning control system, comfort and energy efficiency can be achieved largely unified. An ant colony neural network predictive classification model was developed,and a detailed design steps and some Matlab design code was given. Finally, the model was verified by a university laboratory database summer datasets. The results showed that the use of ant colony algorithm BP neural network tuning,BP algorithm not only overcome the shortcomings easy to fall into local optimum, but also accelerate the convergence speed of ants to improve the accuracy of prediction classification.

关 键 词:热舒适性 蚁群算法 BP神经网络 预测分类 

分 类 号:TU83[建筑科学—供热、供燃气、通风及空调工程] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象