检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孟遂民[1] 秦坤[1] 徐文洋[1] 丁志敏[1] 杨健[2]
机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002 [2]武汉大学电气工程学院,湖北武汉430072
出 处:《陕西电力》2015年第10期11-14,共4页Shanxi Electric Power
基 金:国家自然科学基金(51477121)
摘 要:输电线路覆冰厚度数据对输电线路冰灾防治具有重要意义。线路覆冰达到一定厚度后,电线张力和杆塔荷载会达到危险水平,需要采取相应的措施。建立覆冰厚度预测模型,可以预测某一时间点的覆冰厚度值,为运行单位提供决策参考。利用线路的覆冰历史数据,选择小波神经网络建立覆冰厚度预测模型,并利用共轭梯度算法代替传统的训练算法,显著提高了建模速度。预测结果表明,这种模型具有较好的容错能力,并满足预测精度。It's very important to obtain the transmission line's ice covered thickness for ice disaster prevention. When the ice covered thickness reaches a certain value, wire tension and tower load will reach a dangerous level, so the corresponding precautions must be taken. A prediction model of the ice thickness can predict the ice covered thickness at a certain time and it will provide the operation department with a reference for the decision making. This paper builds the model by use of partial historical data and wavelet neural network, and uses conjugate gradient method for training the network. The modeling speed is significantly increased. The prediction results show that the model is of higher fault tolerance capability and prediction accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15