基于经验模态分解的管道超声回波信号识别  被引量:2

Recognition of pipeline ultrasonic echo signal based on empirical mode decomposition

在线阅读下载全文

作  者:彭成庆 宋寿鹏[1] 赵腾飞[1] 王云蛟[1] 

机构地区:[1]江苏大学测控技术及仪器系,江苏镇江212013

出  处:《信息技术》2015年第11期37-40,共4页Information Technology

基  金:国家自然科学基金资助项目(51375217)

摘  要:在管道超声无损检测中,超声回波信号常受到噪声干扰或者因管道壁缺陷原因导致回波波形重叠,故检测信号很难判断缺陷大小。现采用一种基于经验模态分解(Empirical Model Decomposition,EMD)的方法,对超声回波信号的到达时间进行准确识别。该方法首先把原始采集的超声回波信号进行经验模态分解,预处理回波信号中的噪声干扰,处理后的信号通过正交检波处理得到该信号的峰值包络,则该包络的峰值时刻对应了回波信号的到达时刻。通过对实测缺陷信号的试验,验证了该方法的可行性和准确性。Pipeline ultrasonic NDT echo signals are difficult to determine the sizes of defects because of low SNR or pipeline wall flaw with causing echo overlapped. A technique based on empirical model decomposition (EMD) was proposed to improve the arrival time identification of ultrasonic echo. A signal is decomposed by EMD for pretreating the noise in the echo, and then is changed into the envelope by quadrature detection transform which the arrival times of echoes corresponds to the peaks of the envelope of reconstructed signal. Meanwhile, the effectiveness of this technique was testified by the experimental results with the real ultrasonic data.

关 键 词:经验模态分解 正交检波变换 超声波 信号去噪 

分 类 号:TP274.53[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象