RMPCM:一种基于健壮多元概率校准模型的全网络异常检测方法  被引量:7

RMPCM: network-wide anomaly detection method based on robust multivariate probabilistic calibration model

在线阅读下载全文

作  者:李宇翀[1,2] 罗兴国[1] 钱叶魁 赵鑫 

机构地区:[1]国家数字交换系统工程技术研究中心,河南郑州450002 [2]通信网信息传输与分发技术重点实验室,河北石家庄050000 [3]解放军防空兵学院,河南郑州450052

出  处:《通信学报》2015年第11期201-212,共12页Journal on Communications

基  金:国家重点基础研究发展计划("973"计划)基金资助项目(2012CB315901;2013CB329104);上海市科学技术委员会基金资助项目(13DZ1108800);通信网信息传输与分发技术重点实验室基金资助项目~~

摘  要:提出了一种基于健壮多元概率校准模型的异常检测方法。该方法使用基于多元t分布的隐变量概率模型建立流量矩阵的常态模型,通过比较样本与常态模型之间的马氏距离进行流量异常检测。理论分析和实验表明该方法的健壮性较好,应用场景宽泛,既可以处理完整数据也可以处理数据缺失的情况,对干扰抵抗力较强,并且对模型参数的敏感性较低,性能稳定。Anomaly detection algorithm based on robust multivariate probabilistic calibration model was proposed. This algorithm established normal status model of traffic flow matrix based on the latent variable probability model of multivariate t-distribution. The algorithm implemented network anomaly detection by comparing Mahalanobis distance be- tween samples and normal status model. Theoretical analysis and experiments demonstrate its robustness and wide appli- cation. The algorithm is applicable when dealing with both data integrity and loss. It also has a stronger resistance over noise interference and lower sensitivity on model parameters, all of which indicate its performance stability.

关 键 词:异常检测 缺失数据 噪声干扰 概率模型 隐变量 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象