检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓呈祥 高文利[2] 潘和平[1] 孔广胜[2] 方思南 林振洲[2]
机构地区:[1]中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074 [2]中国地质科学院地球物理地球化学勘查研究所,河北廊坊065000
出 处:《物探与化探》2015年第6期1144-1149,共6页Geophysical and Geochemical Exploration
基 金:国家深部探测技术与实验研究专项(Sino Probe-03-06)
摘 要:庐枞矿集区科学钻探钻遇岩性复杂,岩性亚种类别繁多,利用测井资料识别岩性存在较大的技术难度。笔者采用网格搜索法、粒子群优化和遗传算法三种方法优选支持向量机的核函数参数γ和惩罚因子C,其中基于遗传算法优选的支持向量机参数准确率最高。利用测井,结合岩芯、录井等资料,基于遗传算法建立支持向量机岩性自动识别模型,该模型实际数据预测总体符合率为86.86%,优于BP神经网络,全井岩性识别与岩芯录井相符,取得了好的应用效果。On the basis of Sino Probe,scientific drilling ZK01 of the Luzong ore district located in the Yangtze River basin of eastern China is an integrated geophysical logging study.This study aims at establishing the physical property of lithologic section and revealing the vertical distribution law of metals in the lower crust.For the purpose of detecting the lithologic distribution of the Luzong ore district and providing the information concerning the distribution of metallic ores and evaluation of reserves,the authors chose Support Vector Machine( SVM) to established automatic lithologic identification model for all of the wells.Three methods,i.e.,Grid Search( GS),Particle Swarm Optimization( PSO) and Genetic Algorithm( GA),were applied to find the best parameters C and γ. GA was the best method becasuse it took 34 seconds to obtain the best parameters as( 151.9852,9.1105),and its accuracy was up to 98.6364%. Compared with BP neural network identification results,the GA-SVM model achieved better accuracy of 86.86%.The lithologic identification and automatic zonation results are similar to the core data and artificial lithologic section,and the rationality and feasibility of GA-SVM are verified.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229