检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨林[1] 廖靖宇[1] 张应山[2] 张明珠[1] 吴亚桢[1]
机构地区:[1]许昌学院数学与统计学院,河南许昌461000 [2]华东师范大学金融与统计学院,上海200241
出 处:《数学的实践与认识》2015年第23期216-225,共10页Mathematics in Practice and Theory
基 金:教育部高校博士点专项基金(44K55050);许昌学院科研基金项目(2015017)
摘 要:平衡区组正交表的构造类似于正交表的构造.例如:正交表构造理论中有一个常用的分列和并列技术,这种技术能否推广到平衡区组正交表的构造理论之中呢?本文探讨了用某些已知低水平的设计表替换平衡区组正交表的高水平列(分列技术),或者已知的平衡区组正交表的多个低水平列,合并成一个高水平列(并列技术).研究发现:用正交表作为桥梁,可以进行平衡区组正交表的分列和并列构造.不但从理论上证明了结论,而且用算例分析验证了此构造方法的有效性.The structure of Balanced Block Orthogonal Table is similar to the Orthogonal Table's. For example, there are two widely-used technologies: column's splitting and combine. But can we apply these technologies into the constructive theory of Balanced Block Orthogonal Table ? This thesis discusses how to replace the high level columns of Balanced Block Orthogonal Table by some low level designs already known(column's splitting), or put several low level columns of Balanced Block Orthogonal Table already known together into one high level column(column's combine). The result shows that we can use column's splitting and combine to construct Balanced Block Orthogonal Table through the Orthogonal Table. This thesis not only approves the result from the theory basis, but also approves the effectiveness of this constructive method by the analysis of example.
分 类 号:O212.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.230