检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏金泷[1,2] HERBERT H C IU FERNANDO T
机构地区:[1]西澳大学电气与电子工程学院 [2]泉州师范学院陈守仁工商信息学院,福建泉州362000
出 处:《中国公路学报》2015年第11期112-123,共12页China Journal of Highway and Transport
摘 要:研究了面向嵌入式硬件平台的高速视频图像处理与高速目标跟踪算法。基于神经网络的光流场算法能有效减少程序对硬件系统的内存要求和运算要求,该算法能够比传统算法更加容易的应用于以DSP(数字信号处理)芯片为核心的嵌入式硬件平台中。首先设计了一个基于Hopfield神经网络控制器的自适应滤波器,以图像信噪比为控制指标,对需进行目标识别的视频图像进行图像预处理;然后,利用补偿模糊神经网络控制器对光流场计算方法进行优化,这是一种通过参数控制平滑度实现的平均速度的角度误差和标准角误差的CFNN(补偿模糊神经网络)控制器识别跟踪算法。微机仿真及嵌入式系统试验结果均表明:该算法能够在同等条件下显著提高目标辨别与跟踪能力,显示其具有较高的有效性和实用性。High-speed video image processing and high-speed target tracing algorithm for embedded hardware platform were analyzed.Optical flow field algorithm based on neural network was effective to reduce program memory and computing resource requirements of hardware system,which can be more suitable for embedded hardware platforms with DSP(digital signal processing)chip as kernel than traditional strategies.Hopfield Neural Network controller was applied to design a self-corrected filter and taking image signal-to-noise ratio as control index,image preprocessing was carried out for target recognition video image.Compensatory fuzzy neural network controller was applied to optimize optical flow field calculation,which was through using parameter of control smoothness to realize the reduction of average velocity angle error standard angular error by CFNN(compensatory fuzzy neural network)controller algorithm.The results show that the algorithm can significantly improve the moving target recognition and tracing ability,which proves that it is a more practical and more effective method.
关 键 词:交通工程 图像去噪 补偿模糊神经网络 光流场 目标识别
分 类 号:U492[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222